6 SUSY QCD Part II

6.1 Flat Directions (Classical Moduli Space)
Recall

D% = g(¢* ™ (T bi — 3" (T Gri) (6.1)

and the potential is:

V= _Lpipe. (6.2)
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Define
D}, = (66 (6.3
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D and D), are N x N positive semi-definite Hermitian matrices of rank
F. In a vacuum state we must have:

D® = T2™(D2

m

-Dl)=0 (6.5)
Since T is a complete basis for traceless matrices, we must have
D — D =al (6.6)

m

D7} can be diagonalized by an SU(N) gauge transformation
Ut DU (6.7)

There will be at least N — F zero eigenvalues, while the rest are positive
semi-definite.




where v > 0. In this basis D! must also be diagonal, and it must also have
N — F zero eigenvalues. This tells us that a = 0, and hence that

D, =D (6.9)
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Dy, and D,, are invariant under flavor transformations since

Dy, — Vi ") bmi) V] (6.11)
— (" dm;) = Dy, (6.12)

Thus, up to a flavor transformation we can write

U1
@r=@0=, (6.13)
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So we see that the D-term potential has flat directions eminating from the
zero energy vacuum at ¢ = 0, ¢ = 0, or in other words there is a space of
degenerate vacua. This space is refered to as a moduli space since there a
some massless fields (moduli fields) associated with it. As we change the
values of the vevs we move between physically different vacua with different
particle spectra.

At a generic point in the moduli space the SU(N) gauge symmetry is
broken to SU(N — F').

6.2 SuperHiggs Mechanism?

Consider the simple case when v; = v and v; = 0, for ¢ > 1. Then the gauge
symmetry breaks from SU(N) to SU(N — 1) and the non-Abelian flavor
symmetry breaks from SU(F) x SU(F) to SU(F —1) x SU(F —1). The
number of broken gauge generators is N2 —1—((N—1)2—1) = 2(N—1)+1.
A convenient basis of gauge generators for describing this broken gauge
theory is given by G4 = X0 X7, XJ" T® where A = 1,...,N?> =1, m =
I,...,N—1,anda=1,...,(N—1)2—1. The X’s are the broken generators



while the T"’s are the unbroken SU(N —1) generators. The X’s are analogues
of the Pauli matrices:

X' = —1 (6.14)

X ==z (6.15)
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Where only the (1,m+1) and (m+1,1) components of X{* and X3* are non-
zero. We can also make raising and lowering operators:

Xtm = ﬁ(xl — i X3 (6.17)
){+ = E(Xl + ’LXQ ) (618)
1 (o0 010 0
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We can then write the product of two generators (without a contraction of

row and column indices) as:
GAGA — XOXO +X+mX7m _’_Xmeer +TaTa
Rewriting

¢—(9)+ ¢

we have

> "GN o) = X%(¢) + X (phi)

A

()Y G = ($) X" + (p)X ™

A

We can label the components of the gluino field as
GA)\A — XOAO + X+mA+m + X—mA—m + T(Z)\a

and the quark field as

_ wO Q;’
Q - ( wm Q’mz )

_ w0 wm
Q= ( Q! Q'im )

where @)’ is a matrix with N — 1 rows and F' — 1 columns.
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We can then write the fermion mass terms generated by the Yukawa
interactions as

~Q (XCAYF )X TATG ) + he] (6.29)

- _gv { N1 ~ ! (wOA® — @A) (6.30)

+W™AT™ —TTAT™ + hec. (6.31)

So we have a Dirac fermion (A°, %(wo —@”)) with mass gv 2(1\]7\[—1) two

Dirac fermions (At™, w™), (A~™, —w™)) with mass gv, and massless Weyl
fermions Q', @', Q”, Q", and - (wo +@%)).
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where ¢’ is a matrix with N — 1 rows and ' — 1 columns.
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Vasss = 0 [(60(X°+ X0+ 6" (X + X™)(6)  (6.34)
—(@XO+ X - G+ X)) (635)
92 (N ) * 7* —\2
5 s (h+h*— (" +0) (6.36)

+(H™ -H™(H™-H") (6.37)

Choose a new basis for the scalar field that diagonalizes the mass matrix:

Ht™ = (H™ —H™) (6.38)
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So

o (H™ - H") (6.39)
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ot = \/i(H +H™) (6.40)
-m i *m Trm
T = \/Q(H +H") (6.41)
h® = Re(h—h) (6.42)
7 = Im(h—h) (6.43)
1 _
Q = \ﬁ(h+h) (6.44)
(6.45)
Vinass = g20° E(h0)2+H+””0H*m (6.46)

N

Thus we have a real scalar h° with mass gvy/2(N — 1)/N a complex scalar
H™™ (and it’s conjugate H~™) with mass gv and a massless complex scalar
Q). The 7’s will form the longitudinal components of the massive gauge
bosons. They can be removed by going to Unitary gauge (i.e. by performing
a gauge transformation exp(iX - )).

We can write the gauge fields as:

£A2¢2

GPAJ = XOW) + XTmW I 4 XMW+ TOAS (6.47)

AR AT (67 GG (9)
929/1,1/<¢*> (XOWBXOWS + X+mW/j-mX—mW;m + X—qu—mX—&-mWIj—m)<¢>

N -1 1

Since there is an identical term arising from £ ,—» we have a gauge boson

A2¢

Wg with mass gvy/2(N — 1)/N, a pair of gauge bosons ij and W, with
mass gv, and the massless gauge bosons Ay, of SU (N —1). As expected all
the particles fall into supermultiplets.

To summarize: for v = 0 we have the massless fields:

| SUN) | SU(F) SU(F)
Q O O 1
Q| D 1 0



for v # 0 we have massive states:

| SUWN -1) | SUF -1) SUF -1)

wl 1 1 1
w 0 1 1
w O 1 1
Where the massive vector supermultiplet W9 = (WS, hO, A°, %(wo —@?))
has mass
2(N —1
myo = gu (N) (6.49)

and the massive vector supermultiplets W*+™ = (W™, H*™, AT™ ™) and
W= = (W, ™ H~™, A7™ &™) have mass
Mmy+ = gu. (6.50)

We also have the massless states:

SUN —1) | SUF —1) SU(F —1)
Q' O O 1
qQ 0 1 0
Q" 1 O 1
Q" 1 1 ]
S 1 1 1

Where the singlet chiral supermultiplet S is (%(h + h), %(wo +@?). In-
cluding the gluons (and gluinos) we have for both cases (v = 0 and v # 0)

2(N? —1) +4F N boson degrees of freedom (and of course the same number
of fermion degrees of freedom).
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